
Hot Swapping Architecture
Part 1

–Wikipedia

Hot swapping (frequently called hot plugging) is
replacing or adding components without stopping

or shutting down the system.

Video

http://v.youku.com/v_show/id_XMjkyNzk2NzI4.html

Why hot swappable?

1. Low use cost: no reinstall and no reboot

2. Low development cost: incremental build, runtime debug

3. Low maintenance cost: zero downtime

How to
make your code HOT swappable?

Basic principles

Full build and reboot are required. 😂

Basic principles

In app, full build and reboot. 😂

In OS, no rebuild no reboot. 😀

Basic principles

In webpage, full build and reboot are required. 😂

In browser, no rebuild no reboot. 😀

In OS, no rebuild no reboot. 😀

Basic principles

In webpage, no full rebuild no reboot. 😀

In browser, no rebuild no reboot. 😀

In OS, no rebuild no reboot. 😀

Basic principles

1. No full rebuild

2. No reboot

3. Less impact if they are required

Case: OSGi framework

OSGi is known as Open Services Gateway initiative

• defines the bundle which can be remotely installed,
started, stopped, updated and uninstalled

• implements life cycle to management for bundles

• implements services layer to connect bundles with each
other

So we need

1. a component model to isolate swappable
components from the software system

Hot swapping steps

• Detect changes

• Load the new

• Swap out the old

• Free the old

Case: nginx hot reload
When nginx hot-reloads the new configuration, the
master process checks and applies the new

1. and then starts new worker processes to
service new clients

2. and closes old worker processes gracefully

3. old worker processes are shut down once all
clients are serviced

So we need

1. a component model to isolate swappable
components from the software system

2. a runtime to manage the swapping steps

Let’s code

Using Node.js

• main() invokes print() every second

• edit and save print.js

• to make what main() prints change

main-1.js

const print = require('./print')

function main() {
 setInterval(print, 1000)
}

main()

main-2.js

function main() {
 setInterval(() => {
 const print = require('./print')
 print()
 }, 1000)
}

main()

main-3.js

const fs = require('fs')

function main() {
 setInterval(() => {
 fs.readFile('./print.js', (err, data) => {
 const module = { exports: null }
 eval(data.toString())
 module.exports()
 })
 }, 1000)
}

main()

main-4.js

function main() {
 setInterval(() => {
 delete require.cache[require.resolve('./print')]
 const print = require('./print')
 print()
 }, 1000)
}

main()

http://cs.lmu.edu/~ray/notes/metaprogramming/

Metaprogramming is writing programs that operate
on other programs.

So we need

1. a component model to isolate swappable
components from the software system

2. a runtime to manage the swapping steps

3. meta-programming capability to link dynamically

Hot swapping runtime

Component

Meta-programming

App

Component

Component

Component Pluggable System

Case study
webpack HMR

Component model

In webpack

• any file is a module

• code dependencies are abstracted as a module
dependency graph with a single root

• require/import is reimplemented in order to manage
modules’ life cycle

Steps management runtime

webpack injects HMR runtime

• via webpack-dev-server and HMR plugin

• to keep modules between browser and server in sync

• to check, download and apply the new modules

• and clear the old ones and their side effects

Meta-programming feature

JavaScript is pretty dynamic so that it

• can link new codes by injecting <script />

• can run plain source code using ‘eval’

• can modify any plain object easily, so that webpack can
manage the module system easily it provides

webpack HMR runtime

module

js meta-programming

app

module

module

webpack module system

Questions

1. What is the so called component?

2. How to make it hot swappable?

• How to transfer the state and handle side effects?

3. How to compose them?

Component stack

webpack modules

react components

business domains

webapps

Component model systems

webpack modules

react components

business domains

webapps

webpack module system

react

something more powerful than dva.js
or mirror.js

something like portal project

So we should first

• figure out the component stack against to the
specified hot swapping (no rebuild, no reinstall, no
reboot or something else)

• make clear which layer should be focused on

• design the component model of that layer

Runtime implementation

• If the lower layer is hot
swappable. The upper
layer could be hot
swappable.

• If the lower layer is not
hot swappable. Em, you
have to reconstruct the
stack.

webpack modules

react components

business domains

webapps

Case: react-hot-loader

• webpack module is hot swappable

• webpack provides HMR API

• react-hot-loader hacks every react component it loads

• and implements HMR logic underneath

• so that the modified component re-renders magically

HMR API Demo

A HS component should be

• pure

• impure but side effects revocable

• stateless or state transferable

• compatible

• none of the above, but tolerable to system

Case: some real react app

Impure and side effects irrevocable

• log some info onComponentDidMount

State untransferable

• var A = () => { var key = randomKey(); return <B key={key} />}

Incompatible

• props.id is required but it is optional before

State and side effects

Part 2 may cover this topic.

• They are very difficult and expensive to handle.

• They drive us to reboot our programs

• You can go into react-hot-loader and vue-loader for
more details. 🙄

Compose them together

Part 2 may cover.

Please refer to component based programming.

https://en.wikipedia.org/wiki/Component-based_software_engineering

Summary

To build a hot swappable architecture, we need

1. a component model which swappable components can
be plugged in

2. a runtime to manage swapping things

3. meta-programming features underneath

Summary

To make the component model hot swappable, we need

1. hot swappable components below

2. component features like pure and stateless

3. reasonable compound mode

Thanks

